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ADAPTIVE CANCELLER LIMITATIONS
CAUSED BY I,Q MISMATCH ERRORS

I. INTRODUCTION

An adaptive canceller combines auxiliary channels of data with a main channel of data in such a
way so as to minimize the main channel output noise power residue. Hence, an effective way of
eliminating unwanted data (or noise) from a main channel (the information channel) is by inputting
correlated data from auxiliary channels. Mismatch errors of any kind between channels of an adap-
tive canceller can cause a reduction in the achievable cancellation ratio. These mismatch errors can
include small time-delay differences, in-phase (I) and quadature-phase (Q) imbalances, sampling
errors, and filter frequency mismatch errors among the various channels. For a radar or communica-
tions digital canceller, many of these errors occur because of the radio frequency (RF)-to-intermediate
frequency (IF)-to-baseband-to-sample and hold (S+H)-to-analog-to-digital (A/D) chain that is present
in each channel as illustrated in Fig. 1(a). If any link of this chain is not identical among the chan-
nels, mismatch errors cause the canceller performance to degrade.

This report is an extension of Ref. 1 in which the effects of IF filter mismatch errors on adap-
tive cancellers were investigated. In this report, the effects of I,Q phase and amplitude quadrature
errors and low pass filter (LPF) mismatches on adaptive cancellation performance are examined. We
also briefly discuss the effects of cascading mismatched IF and 1,Q filters. Additional research in this
area can be found in Refs. 2 and 3.

To compensate for frequency mismatch errors, adaptive digital transversal filters are often
inserted into the auxiliary channels. Figure 1(b) illustrates a two-channel compensated adaptive can-
celler. Here, we have two signals y,(¢) and y,(¢) inputted to the main and auxiliary channels,
respectively. These signals may be at RF or IF. Each signal is quadrature detected into I and Q
components through a double mixer operation. Thereafter, each I and Q component is passed through
a low pass filter to eliminate upper band components while retaining the baseband information. The
four resulting channels are sampled every T seconds and converted into digital form.

Errors occur in the mixer operation in the form of amplitude and phase perturbations, i.e., the
amplitude and phases of each mixer may not be identical. In addition, mismatch errors occur in the
synthesis of the LPFs. Normally, these are designed to be identical but because of inaccuracies in the
synthesis process, the LPFs are rarely identical.

To compensate for this mismatch, an adaptive transversal filter (or a tapped delay line) is often
inserted into the auxiliary channel, and weights w,, n = 1,2, ..., N on these taps are adjusted so
that the output noise power residue of v () (see Fig. 1(b)) is minimized. Note that the tap time delay
T is normally less than the Nyquist sampling interval 1/B, where B is the input signal’s bandwidth
(includes + frequencies). In addition, the main channel is delayed such that the auxiliary samples are
‘time-centered.

Manuscript approved December 8, 1988.
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Fig. 1(a) — RF-to-IF-to-baseband-to-digital conversion chain for the main and auxiliary channels
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Fig. 1(b) — 1,Q conversion and adaptive transversal filter compensation

If we define w = (w;, wy, ..., wy)T to be the optimal complex valued weighting vector, where
T denotes the transpose operation, then it can be shown [2] that w is the solution of the vector equa-
tion:

Rw=r, (1.1)

where R is the covariance matrix of the time-delayed taps in the auxiliary channel and r is the cross
covariance vector between the auxiliary taps and the time-centered main channel. More formally

R = E{x* xT} (1.2)

and

r = Efx* xy), (1.3)
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where E{-} denotes the expected value, * denotes the complex conjugate, and x = (x|, x5, ..., )cN)T
is the vector of time-delayed signals in the auxiliary channel.

To completely understand the effects of the frequency mismatch errors, the statistical charac-
teristics of the input signals in the main and auxiliary channels must be known. However, this may
not be possible in many instances. We have chosen to characterize and investigate the effects of the
frequency mismatch errors on cancellation when the adaptive canceller is in the self-cancellation
mode. Here, we tie the main and auxiliary inputs together and input a wideband signal. We then
calculate first order error expressions for the output cancellation power residue. Thus the self-
canceller mode yields best case (or an upper bound on) cancellation performance.

This report is laid out as follows: The phase and amplitude quadrature error model and the LPF
error model are presented in Section II. A ‘‘separation principle’’ that allows us to separate the phase
and amplitude errors from the LPF errors is described in Section HII. Expressions for these errors are
developed in Sections IV to VI and are further discussed in Section VII. In Section VIII, we briefly
consider the canceller performance of cascaded mismatched IF and 1,Q filters.

Other types of RF-to-digital 1,Q conversion errors also limit cancellation but are not considered

here. Among these are I and Q sampling/strobing errors (fixed offset and random), DC bias, non-
linearities, and intermods.

I1. 1,Q CHANNEL ERROR MODEL

This section presents the model to be used to characterize the phase and amplitude quadrature
errors and the LPF mismatches. We begin with the phase and amplitude errors. Figure 2 shows a
quadrature detection model for a given channel (main or auxiliaries). Assume small (much less than
one) and constant I and Q amplitude errors a; and a,, and phase errors ¢; and ¢, (the subscripts or
superscripts i and g are used to denote the respective I and Q errors). If we denote the baseband I
and Q terms before low pass filtering as i’() and q'(z), respectively, then it is straightforward to

show that
'@ €11 €12 i)
{Q'(I) } - [12 * {621 €2 } J L(t)il ’ @D

where I, is the 2 X 2 identity matrix, i(t) and g () are the mixer inputs, and

€1 =1 +a)cosop;, — 1,
€1 = "(1 + ai) sin ¢i,
e = (1 + aq) sin P> and (2.2)

en = (1 +a,)cos ¢, — 1.
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(1+ a;)cos{wyt + ;)

) ' HOGe) b i)

i(t)cos%t + g(t)sin wot —>

')

H () - a"()

@
(1+ aq)sin(wot+ ¢q)

Fig. 2 — 1,Q detector

Define the 1,Q perturbation matrix E as

€11 €12
F = . 2.3)
€1 €2

Note that €;;, €12, €1, € < < 1. Figure 3 further depicts the 1,Q amplitude and phase quadrature
errors.

1+e11

€21

1+622

Fig. 3 — Model of 1,Q quadrature errors

The LPF mismatches can be modeled by using a first order pole/zero error model that was first
introduced in Ref. 1. We assume that all LPFs are designed to some desired LPF that has a fre-
quency transfer function (FTF) denoted by H(jw). However, because of errors in the synthesis pro-
cess, the poles and zeros of H(jw) are not as designed and have small perturbations around the
desired poles and zeroes (Fig. 4). We assume that the designed filters are realizable so that all poles
(unperturbed and perturbed) lie in the left-hand complex plane. This restricts the probability density
function (p.d.f.) of the magnitude of the perturbation in that if \ is the maximum real part of any
unperturbed pole, then the domain of the p.d.f. is bounded by |\|, where |-| denotes the magnitude
operation. These perturbations are assumed to be small enough that we can use first order approxi-
mations for the filter responses in the main and auxiliary channels.

It is important to note that because the LPFs are at baseband, the poles and zeros of the FTF
must appear in conjugate pairs. Hence it follows that the errors of a given pole or zero must also be
conjugate pairs.
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Fig. 4 — Pole with perturbation

Assume that real and imaginary parts of each perturbation are statistically independent and ident-
ically distributed zero mean real random variables. Also, assume that the perturbation each on conju-
gate pair is a statisically independent and identically distributed random complex variable. The vari-
ance of the magnitude of each perturbation is denoted by Gle_

We assume that the desired FTF is a ratio of polynomials such that

. P(jw)
H(w) = —, 2.4

V9= 5w
where P(-) and Q(') are polynominals of order m and n, respectively. Consider the Laplace
transform representations of P(jw) and Q(jw): P(s) and Q(s). Let s ,s¥,... .5 be the roots
of P(s), and let s{?,s{0,... 54 be the roots of Q(s). Therefore P(jw) and Q(jw) can be

expressed as

P(w) = (jw —sP)... jw ~ 59 (2.5)

and
Q(w) = (o — sP)... o — 59). (2.6)

Consider just P(jw). Let each root s, k =12,...,m be perturbed by a small amount,
As{?’. Then the numerator polynomial is actually P (jw), where

P(Gw) = (o — s ~ AsP). ..o — 5, - As,P)). Q.7
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We assume that no roots of P(s) and Q(s) lie on or are arbitrarily close to the ] w axis. This
assumption allows us to write an expansion of P(jw) and Q(jw) that does not have any singular
points. If we expand Eq. (2.7) and retain only the lower order terms, then

P(w) = (o —sP)...(o—sP)

m
-~ ¥ (e —sP).. Go— s ) (o —sPl).. (o — 5P As@ (2.8)
k=1

m ASk(p)
= (o —sP)...(o—sP)|1 - —
k=1Jw = 8

. m Ask(P)
SPU 1= B
k=1J®w — S

Similarly, it can be shown that the denominator polynomial when perturbed has the form

~ X n Ask(q)
QUw) =QUw) |l - ¥ ——— 2.9
ko1 Jo — st
Therefore, the perturbed FTF has the form
m ASk(p)
P(jw) 1_L>:1}'w—sk(")
~ « - =
H(jw) = — - 2.10)
TG0 T A
k=1 jo — 59
or
~ Hio |1 i Ask(q) }’5 Ask(p) @.11)
H(jw) =H(w + —_— - — |, )
P R s
where we have retained only the lower order terms.
Rewrite Eq. (2.11) as
- n+m Ask
H(jw) =H(w) |1+ _—, 2.12)
k=1 Jw — 8
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where we have set

Ask —Ask(p)

— k=12,....m 2.13)

and

ASpp = ASD
5 k=1.2,...,n. (2.14)

Il

S +k

As previously mentioned, we assume that H\$), Hi), H{) and H{% are designed to be matched
to H(jw), but because of inaccuracies are not equal to H(j w). The first order pole/zero error model
is used to express

M AsM
HY (jo) = Hjo) |1+ ¥ ——— |, 2.15)
m=1 Jw Sm
— As(M“) |
HY (o) = HGw) |1+ % — |, (2.16)
| m= 1 J@ Sm ]
As(A‘) W
H{ (jo) = H(jo) | 1+ ): oo | 2.17)
m=1
and
As(A")
H? (jo) = HGw) | 1+ E was , 2.18)
m=1

where M is the number of poles and zeroes of H(jw), and m is now an index. The parameters
Sp,m = 1,2, , M are some ordering of the poles and zeros of H(jw), and As(M) As,,(,M"),
As,,(,A'), and As,, ") are the perturbation of the poles and zeros of Hif’ (jw), Hif’ (jw), H{’ (jw), and

H{?(j w) respectively. These perturbations are assumed to be 1ndependent from LPF to LPF. We set
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M)
AHP(w) = ¥ A (2.19)
M o Jo = sy )
AP o = B 2 2.20
w) = -, .
m=1 Jw — 8§,
AHY) (o) = ¥ By @.21)
w) = I —— .
4 m=1 Jw — 8§y
and
A
AH(q)(jw) =y __M (2.22)
4 m=1 jw ~ Sm . .
Thus, the first order approximations of the perturbed LPFs are
HD (jw) =H(jw) (1 + AHJ (j)), (2.23)
HP (o) = Hjw) (1 + AHD(w)), (2.24)
H{(w) = Hjw) (1 + AH{ (jw)), (2.25)
and
HP(w) = Hjw) (1 + AHD(jw)). (2.26)

Finally, we depict the I,Q channel error model with canceller as shown in Fig. 5.

AMPLITUDE AND
PHASE QUADATURE

DISTORTION
, LPF .
0 S o P
I, +Ey
["J a'm® HEe |9m
| j
Oy A
Iy +Ep +
a0) WL o 4G

Fig. 5 — Self-cancellation model
8
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III. SEPARATION PRINCIPLE

In the next few sections, an approximate (or first order) expression for the output noise power
residue after cancellation in terms of the variance of the mismatch errors is derived. In this section,
we prove a ‘‘separation principle”” whereby we show that this error is the sum of residue terms each
computed with respect to one given error; i.e., we set all errors equal to zero except one when com-
puting a given error term.

This separation principle actually follows from a Taylor series expansion of the output noise
power residue as a function of the various mismatch errors. Let Ry be the covariance matrix of aux-
iliary data (with time taps), let rq, be the cross correlation vector between the main channel and the
auxiliary’s time taps, and let P{9 be the input power of the main channel with Rgg, rgg, and P{® cal-
culated with no channel errors. Let py, k = 1,2, ..., K represent a set of channel errors assumed
to be zero mean and independent. We can write the output power residue P, averaged over the
channel inputs as a function of Ry, rgg, PO and p,:

Py = FRop, Yoo, P, p) (3.1)

where p = (p;, P2, -. ., Pg)- In all practical cases, P, is an analytical function of Reyg, Tog, PO,
P1> P2» - - - » Pg With no singular values so that its functional representation can be expanded by using
a multidimensional Taylor series:

K
Pout = F(ROO’ Toos Pi(r?)’ 0) + EFlk(ROO’ Yoo, Pi(l'(l)))pk
k=1

K
+ ¥ Fy(Roo, Yoo, P) o |* + Of(cross,A’), (3.2)
k=0

where Fy; (Rog, Toos PL¥) and Fy Reg, T, P) are the first and second order partial derivatives,
respectively, of F(Ryg, Ioo» P©) with respect to p; and evaluated at p = 0. O(cross,A?) represents
cross terms between the pg, kK = 1, 2, ..., K and/or higher order terms.

If P, is averaged over the channel errors and only the first order variance terms are retained,
then

K
Péﬁre) = Eerrors {Pout} = F(ROO’ Foo, Pi(r?)’ 0) + E F2k(R00’ L Pi(r?)) 0[3, (33)
k=1 :

where of = E{]p;|?} is the variance of the kth error. Equation (3.3) exemplifies the separation
principle since each Fy; (Rog, Foo, POy, k =1,2,..., K is computed independently of other pertur-
bation errors.

Thus with respect to the I,Q mismatch errors, we first compute an error term for the output
noise power residue that results from the LPF mismatches while setting the I,Q phase and amplitude
quadrature errors equal to zero. Thereafter, we compute an error term for the 1,Q phase and ampli-

tude errors while setting the LPF errors to zero. The sum of these two errors is the first order error

approximation of P &9 . 9



KARL GERLACH

The inverse cancellation ratio can be computed in the same manner if we assume the

F(Rqg, Toos Pl(,?) , 0) = 0 (which is the case in the self-cancellation mode). To see this we define the
inverse cancellation ratio as

P(ave)
— t
CR 1 (z:ve)_ (34)
p in
Note that P& = P2 + A where P09 js the average input power in the main channel

without errors, and A represents a small error term caused by the channel mismatch perturbations. If
FRy, Too, P¥) = 0 and Eq. (3.3) is substituted into Eq. (3.4), then

K
Y Fy(Ryg, Tog, P0)a?

-1 _ k=1
CR ! = PO § A (3.5)

1

= e P o P -

A
(P(O ave) E F2k(ROO Yoo, Pi(r?))okz + O(Az)

Note that all terms other than the first are second order terms so that a first order approximation of
CR'is

CR™' = ): F (Ryg, o0, P of. (3.6)
=1

Again the separation principle holds when computing the inverse cancellation ratio.

IV. FREQUENCY MISMATCH ERRORS

In this section, a first order expression is derived for the output noise power residue that results
from having LPF frequency mismatch errors only. We use the self-cancellation configuration seen in
Fig. 5. Here, i(t) and gq(¢) are assumed to be identically distributed and independent real noise
sources. The noise spectrum S;; (w) and Sqq (w) of the I and Q noise sources is assumed to be white so

that §;;(w) = Sy (w) = 1 for all w. For this analysis we assume that the number of delay line taps N
is an odd integer.

From Fig. 5, the output residue voltage v(¢) can be expressed as

v(t) = xp(t) — WIX(). @.1
If we set
Py = E{|v(t)|* @.2)
and
P, = E{|xy()|?, @.3)

10
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where P, and P;, are the output and input noise powers, respectively, then it can be shown [2] that

P,i = Py — w'Rw, 4.4

where R is defined by Eq. (1.2) and w is the vector solution of Eq. (1.1). In fact, by using Eq.

(1.1), we can show that
P, =P, — rR7'r, 4.5)

out

where ¢ denotes the complex conjugate transpose operation. The inverse cancellation ratio (or noise
attenuation factor) P, /P;, can then be expressed by

Py _ P, - rR7r ' “.6)

in

Note for the self-canceller that P, /P, = 0 if H{(jw) = HY(w) and H{?(jw) = HJ(j w).
We show this as follows. If the main and auxiliary inputs are identical, the optimal weighting w, for
the self-canceller is

N +1 ..
position
|
wo,=00...100...07T. 4.7)
This is due to the fact that
Xy, +1(8) = Xy (0), @.8)
where we have set
N, = N 2_ L (4.9)

Hence, we simply subtract the N,th output of the transversal filter seen in Fig. 5 from the output of
the time delay element in the main channel to yield zero output noise power residue. As a result, if
roo and Ry, are the cross covariance vector and covariance matrix under these ideal conditions (per-
fectly matched filters), then

N +1
!
Ryp'rgp =wo=(00...10...07T. (4.10)

position

The result of Eq. (4.10) is used to simplify many of the expressions in the upcoming derivations.

11
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Expressions for the elements of Ry and ry, are easily derivable. It can be shown that if Ry ,,
is the nmth element of the matrix Ry, then

Room = Zaj_m | H(jw) |2/ o8I =m)g o, n,m=12...,N 4.11)

where the factor of two on the above expression results from adding the identical I and Q contribu-
tions, and a is some nonzero proportionality constant. In fact, in the following discussions we arbi-
trarily set a = 1 because we will be dealing with ratios of powers, which implies that none of the
outputs calculated will be a function of a. Note that we have normalized the angular frequency to the
desired angular bandwidth 7B, where B is the frequency bandwidth of the desired FTF, H(jw).
Similarly, if ro, is the nth element of ry, then

roon =2§__ |HGw) 2™ " de,  n=1,2,... N 4.12)

To be consistent with the notation of Ref. 1 from which this report derives, we define R, and ry
(which are quantities used in Ref. 1) in terms of Ry, and ry,, respectively

_ 1
R0—2R00
and

Ig = 21’00.

The elements of the inverse of R are defined as
Ry = (R{™) n,m=1,2,...,N. 4.13)

Expressions for the elements of R and r are given by

o . .
an — S_oo |H/§’)(I.w)l2 ejw‘;rBT(n—m) dw

+ [ |H@Gw) |2 e BT~y nm = 1,2,...,N 4.14)
and
r, = 5_ H,gi)* (].w)HAg)(]'w)ejwaT(n—Nz) do
+ 7 HOGw) PG T M40, n=1,2,...,N. (4.15)

Note that the expressions for R,, and r, can be divided into the sum of individual I and Q contribu-
tions because of the independence of i () and g (z). This property is used in the forthcoming develop-
ment.

12
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If we use the first order approximations of Hy{)(jw), H{f’(jw), H{)(jw), and H{?(jw) given by

Eqgs. (2.23) to (2.26) respectively, by using Eqgs. (4.14) and (4.15) we can show that

R, = Rooum + ARY) + AR nom =12,... N

and

r, = rOO’n + Arn(i) + Arn(q), n = 1529"' ’N

where

ARn('ln) — s—o; 'H IZ(AH/?) 4 AH/gi)*)ejaanT(n—m)dw + S::o ‘H | 2 IAHA(i)|2ejw7rBT(n—m)dw
AR = [ 7 |H |2 AHD + A" I g
— oo

[ ] .
+ [  |H|?|AH@ |2 BT =™ gy, n,m =1,2,...,N
— 00
and

JjwnwBT(n —

ArD = [ |H|? (AH{" + AH{D)e ¥ de

=] . . . _
+ [ [H[2AHP" AHD S0 7N gy
oo . _
Ar{® = |H|? (AH" + AH) /77" 7 g4,

+__ |H|2AH@" AHP ™" "M gy, n=1,2,.. N,
Furthermore, if we define
Py =P + APQ + AP,
where P9 is the input power when there are no perturbations, then it can be shown that
APD = |H|?@AHP + AHYdo + § |H|? |AHY |%dw
and
APY = |H|*AHP + AHPYdo + | |H|?|AHJ |2 dw.
We set
Ar = Ar; + Arq,
AR = AR; + AR,

13

(4.16)

4.17)

4.18a)

(4.18b)

(4.19a)

(4.19b)
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4.22)

4.23)
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and
AP, = AP + AP, (4.24)
where
Ar; = (Ar), ArD oL, ArfYT, (4.25)
Ar, = (Ar{?, Arf®, ..., Ar{D)T, (4.26)
AR; = (AR{)), n,m=1,2,...,N, @.27)
and
AR, = (ARD), n,m=1,2,...,N. 4.28)

We rewrite the output power residue given by Eq. (4.5) in terms of the perturbations given by
Eqgs. (4.22) to (4.24):

Pow = PO + AP, — (g + ArY Ry + AR) 7! (ryg + AI). 4.29)

Note that the AR matrix is Hermitian Toeplitz. A second order approximation of (Rgy + AR) ™! is
used. This can be shown to be

Ry + AR} = Ry — Rp'ARRy! + Ry ARRg'ARR . (4.30)

If Eq. (4.29) is expanded and only the second order and below perturbation terms are retained, then
Py =PY + AP, — rfRy'ren — AFRyp'Tyy — riReg Ar
— AFRg'Ar + rfRg'ARRg'ry + Ar'Rig!'ARRg'vg
+ iR ARRy'Ar — ri Ry ARR gy ARRg 1. (4.31)
Note that an immediate simplification of Eq. (4.31) results because

P — rfReg're = 0. 4.32)
The output noise power P, is averaged over the identical zero mean probability density functions

(p.d.f.’s) of the pole and zero perturbations to obtain an average cancellation residue. Since the
p.d.f.’s are zero mean, it follows immediately that

14
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E{ArRg're) = 0

and

E(r§Rgp'Ar} = 0.

@.33)

(4.34)

If we substitute Egs. (4.22), (4.23), and (4.24) into Eq. (4.31) and take the expected values over
the pole/zero perturbation errors, then all of the i and g cross terms are zero or of second order

because these errors are zero mean and independent. It can be shown that

1 _ 1 _
EE{Ar,-’RO A} + EE{Ar;RO ‘Ar,}

E{Ar'Ry Ar} =
E{r{oRo'6RRg'ro0) = E(r{Ry 'AR; Ry 'ry} + EfriR; 'AR, Ry 1y}
E{ArRG'ARRg 1y} = %E{Ar{RO_IARI-RO‘IrO} + %E{Ar;RO‘IARqRO‘IrO}

E{rjR'ARRg'Ar) = E{(Ar'R; 'ARR; 'rp))

E{r{oRy ' ARRG'ARR g 'r o} = %E{r@RO’IARiRO‘IARiRO‘IrO}

1 _ _
+ EE{r(t)Ro 'AR R, 'AR, Ry 'rg} + second order term.

By using the results from Appendix A of Ref. 1, it is straightforward that

E{AP{)} = E{AP®} = ofyT
E{Ar/Rg 'Ar;} = E{Ar)Rg 'Ar,} = 2071,

E(r{Ry 'AR;Rq 'rg} = E{r{Ry 'AR Ry 'rg} = o,T
E{Ar/R; 'AR; Ry 'rg} = E{Ar,Rg AR Ry 'rg} = ooy + ofpTy*
E{riR; 'AR;R; 'Ar;) = E{riRy AR Ry 'Ar,} = ofpl'y + ojpT'3

E(r{Ry 'AR;R; 'AR;R; 'ro} = E{rjRs 'AR, Ry 'AR R 'ro)
= 20T + o3 + afpTs*,
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where U,ZQ is the variance of the magnitude of the pole perturbation,

r, - )155@ H|%dw

. : (4.46)
R e

M N N 2 JuxBT(N,—k)
® |H|% dw
=YY% % {Rékm). [H | e
i=1k=1m= S“” Jw — S;
o H 2 jwrBT(m —Nz)d
S A E— (4.47)
“J(l) _Si
and
M N N ® lleeiwvrBT(Nz—k)
=Y ¥ ¥ R - , dw
i=l k=1 m=1 §_°° Jw — S
. 2 JjwxBT(m — N,)
§ [H] e do. (4.48)

JW = Sy

Note that I"; and I", are real, and the I'; term results from the fact that Asy, = Asys_,, for either the
I or Q LPF.

We define P&/® to be P, averaged over all the LPF perturbations. By substituting the result
of Egs. (4.40) to (4.45) into Eq. (4.31), it can be shown that

P& =4Iy — 2TYak. (4.49)

Note that the I'; term does not appear in the expression for P& Examining Eq. (4.6), we see by
use of the above results that P& /P, is proportional to o,ZQ and that the constant of proportionality
in the first order approximation does not change if we set P;;, = P We arbitrarily set

§__|H(w o =1 (4.50)
so that P® = 2. Thus
P& /P,
——— =T, - T, @.51)
O'IQ

Now, 2(I'; — I',) equals the cancellation-filter mismatch ratio (CFMR) (see Eq. (3.38), Ref. 1),
which is a measure of cancelling just the I (or Q) auxiliary channel against the main I (or Q) channel.
Hence Eq. (4.51) is rewritten as

16
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(gﬂ‘tle) /1 in 1
——= = — CFMR + I, 4.52)
g 2
10

M o 2
%CFMR%— ES_WM

i=1 ljw — s |*
We define

o 2
IQMF = 3 (7 LH1de 4.53)
i=1

- |jw — 5|2

to be the I,Q mismatch factor so that

P (ave) /P.
Zow Tin _ L CpMR + IQMF. 4.54)
0'12Q 2

It turns out that CFMR can be made arbitrarily small by adjusting N and BT. However, IQMF,
which is independent of N and BT, cannot. We discuss this further in Section V.

V. A SPECIAL CASE: THE BUTTERWORTH FILTER
In this section the IQMF is evaluated for the case when the desired transfer function is a Butter-
worth filter. This filter is of much interest because it is easily synthesized and is a low pass filter

with the attenuation of the skirts controlled by the order of the filter.

This filter has the following magnitude-squared angular frequency response:

|H(w)|? = —2 5.1)
1+w2M’ )

where M defines the order of the filter, the angular frequency has been normalized to the desired
angular bandwidth 7B, and

co = % sin ﬁ (5.2)

The constant cg has been chosen so that Eq. (4.50) is satisfied. Curves of the Butterworth filter
response are shown in Fig. 6 for various values of M. Note, that by increasing M that the skirts of

the bandpass filter become more attenuated.

The filter is synthesized by finding an H(s) function whose poles are in the left-hand side of the
s -plane such that

HH(=5) s = jo = |HGw) |2 (5.3)

17
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[H (o) 2

wgy = 7B

0.01 01 1.0 100

((1)/(!}0)

Fig. 6 — Butterworth filter response

Now the poles of | H(jw)] 2 can be shown to lie on the unit circle and are spaced equally in angle as
illustrated in Fig. 7 for M = 3. Hence to find H(s), the M left-hand plane poles of |H (Gw)|? are

identified and used to form the polynomial H(s); i.e., if s;, i = 1,2, ..., M are the left-handed
poles, then
H(s) = Veolls = s))(s —52) ... (s — 5017 " (5.4)

As noted in the previous section, CFMR was evaluated in Ref. 1 for the Butterworth filter. In addi-
tion it is shown that
® H|%d we 1
T e T in—— i — 1
sin M (2i )

Thus by using Eq. (3.53) it follows that

™

M @i — 1, (5.6)

M . o M
IQMF = — —
Q > sin 2 ,-§=:1 csc

where csc (+) is the cosecant function.

We note that IQMF is a function of M so we denote it by IQMF (M) but not by N and BT,
whereas CEMR is a function of M, N, and BT which we denote by CFMR (M, N, BT). Thus

out

P& /Py = b, [-;— CFMRM, N, BT) + IQMF(M)J : .7

18
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Fig. 7 — Pole plot of Butterworth filter of order 3

Plots of .5CFMR(M ,N ,BT) are shown in Figs. 8 to 17 for various values of M, N, and BT (N
is an odd integer). In addition, for each set of plots, IQMF (M) is graphed. Note from these curves
that for N >1,

IQMF(M) >> —;— CFMRWM, N, BT). (5.8j

Hence, the IQMF term is the dominant term of Eq. (5.7). As a result, we conclude that transversal
filter compensation has a small effect on improving cancellation when I and Q frequency mismatch
errors are present. This is discussed further in Section VII.

V1. PHASE AND AMPLITUDE QUADRATURE ERRORS

In this section a first order expression is derived for the inverse cancellation ratio (CR™) as a
function of the phase and amplitude quadrature errors. Since it is demonstrated in the previous sec-
tion that transversal filter compensation is ineffective if there are LPF mismatches, only the case
when N = 1 is considered. As it is discussed in Section III, all the LPFs are assumed to be matched
and equal to H(j w).

For a single auxiliary canceller (N = 1), it can be shown that

out

P.

m

=1- |a|? (6.1)

where « is the normalized cross correlation between the main and auxiliary channels. More formally,
if x;; and x4 are the main and auxiliary inputs to the canceller, then

19



where  the o
0= {a)2<,

We assume there are statisticaliy independent 210 mean p}
With variances oj and g2, Tespectively Furthermnre, we use
shown in Fig. 5 25 4 reference channet gq that this channel hy;
choose the auxiiary channel to have no errors.

15—~
BT= 1 — o = 1OMF

12

= N=g
N=13

G- N=17
N=27N

=5

0.5 CFMR OR 1aMF, g3
®

|
pory
W

! t

~28 L.

¢ 5 6 7 8 S 10 11 12 13 14 15
M. ORDER oF BUTTERWOF«ITH FILTER

Fig. g3 -SCFMR, IOMF v M, BT =

—
[i>)
[ #+]
B



0.5 CFMR OR IQMF, dB

-18

-23-

-28 -

—-38

NRL REPORT 9115

I | | l_ 1 1 ] ] 1 J

[Ng

w

5 6 7 8 9 10 11 12 13 14 15
M, ORDER OF BUTTERWORTH FILTER

Fig. 9 — .5CFMR, IQMF vs M, BT = 2

21



0.5 CFMR OR IQMF, dB

15

12

1
w

I
a2]

|
—_
w

I
—
o]

I
N
w

-28

-33

-38

KARL GERLACH

| i | l ! | |

zZz2zz22Z2 Z

5 6 7 8 9 10 11
M, ORDER OF BUTTERWORTH FILTER

Fig. 10 — .5CFMR, IQMF vs M, BT = .3

22

12

13

14

15

non il
NDN—= = © O,
a—+~NWw

nun



0.5 CFMR OR IQMF, dB

-13

|
—
@

{
N
w

-28

-33

~38

NRL REPORT 9115

I ] | I S i 1 | L ] ] |

=

W -

4 5 6 7 8 9 10 11 12 13 14 15
M, ORDER OF BUTTERWORTH FILTER

Fig. 11 — .5CFMR, IQMF vs M, BT = 4

W ]
[4)]

zzz2zzZ2 Z
nwu
N = o
- N W

]
N
é)]



0.5 CFMR OR IQMF, dB

-13

|
-—
(s o]

|
N
w

-28

-33

—-38

KARL GERLACH

| | | | I | ]

5 6 7 8 9 10 11
M, ORDER OF BUTTERWORTH FILTER

Fig. 12 — .5CFMR, IQMF vs M, BT = .5

24

N=9

N=13
N=17
N=21
N=25



0.5 CFMR OR IQMF, dB

NRL REPORT 9115

15

12

!
w

1
[e+]
Z
L[}
-
~

=21
-13 |- N
N=25
~-18
-23 -
_28 |-
-33 ] | ] il | 1 L1 ] ] ] ! ]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M, ORDER OF BUTTERWORT!{ FILTER

Fig. 13 — .5CFMR, IQMF vs M, BT = .6

25



0.5 CFMR OR IQMF, dB

|
-
w

-18

-23

-28

KARL GERLACH

] i I l | | ]

5 6 7 8 9 10 11
M, ORDER OF BUTTERWORTH FILTER

Fig. 14 — .5CFMR, IQMF vs M, BT = .7

26



0.5 CFMR OR IQMF, dB

-13

~18

-23

NRL REPORT 9115

N

] | ] ] ! ] l | A | 1 | 1

2 3 4 5 6 7 8 9 10 11 12 13 14
M, ORDER OF BUTTERWORTH FILTER

Fig. 15 — .SCFMR, IQMF vs M, BT = .8

27




0.5 CFMR OR IQMF, dB

15

12

~

KARL GERLACH

| ! | | | | ] | I |

N =21
N=25

5 6 7 8 9 10 11 12 13 14
M, ORDER OF BUTTERWORTH FILTER

Fig. 16 — .5CFMR, IQMF vs M, BT = .9

28

15



NRL REPORT 9115

15—

BT=1.0

— |IQMF
-

N=9

N=13

T N\N=25

0.5 CFMR OR IQMF, dB

Y S Y S Y O N HNU SN N N NN S NN S
t 2 3 4 5 66 7 8 9 10 11 12 13 14 15

M, ORDER OF BUTTERWORTH FILTER

Fig. 17 — .5CFMR, IQMF vs M, BT =1

Let I(¢) and Q(¢) be the output of the LPFs if there were no phase or amplitude errors in the
model. Thus

10 = _iht = 7 dr 6.3)

and
QW) =] _q@h( — ndr, 6.4)

where h(t) is the impulse response function associated with H(jw). Assume that i(¢) and g(z) are
identically distributed independent zero mean unit variance white noise sources.
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Now assume that there are phase and amplitude quadrature errors. Thus by using the model
(and variables defined) shown in Fig. 5,

e r
i'34(0) el 3 1)
gy | = [t e 0 0() 6.5)
i) (e efa“U 1)
gy |~ 2T o o OBE 6.6)
where
X)) = i) + jg' 1) 6.7)
and
X4(0) = i'4(t) + jg'4(t). (6.8)

We compute x% x;, by using Eq. (4.50) as
iy = (L+ el + i) (1 + efl) + € + 70+ ) () - ). 6.9)
It is straightforward to show that

|x%xp 12 =4 + 2 4+ D2 4 B2 4 (M2 4 (302 4 (D2 4 0, 0), (6.10)

where O (¢, 0) indicates higher order terms or terms that go to zero when the expectation is taken.
In similar fashion, it can be shown that

a2 =2 + 62 + i + 0% + I + 0(&, 0) (6.11)
and
|xs |2 =2 + e{f? + €2 + 0 (&, 0). (6.12)
Now
1 — 'a|2: 'xAlzllez— lxﬁlez (6.13)
EMENEME
and

|x4 1% |xp |2 =4+ A, (6.14)
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where A<<4. Thus the first order expression for the expected value of 1 ~ |«|? taken over the
phase and amplitude errors is given by

E{l = |a|?) = — E {|xg|? |y |* = |xfan 7). (6.15)

1
4
By using Egs. (6.10), (6.13), and Eq. (6.15) it can be shown that

E{l — |a|Y} = = E {2 + % + 47 + 02 + % + 4. (6.16)

1
4
Expressions for the errors in terms of the phase and amplitude quadrature errors are given by

Eq. (2.2). If the small angle approximations are used that so that sin¢ = ¢ and cos ¢ =1 — 502,
and only first order terms are retained, then it can be shown that

E(efi") = E{ef}?) = Elef?} = o] (6.17)

E{e!) = E(ef?) = E{ed} = o3. (6.18)

Thus the first order expression for the inverse cancellation ratio, assuming constant phase and
amplitude quadrature errors, is

P (ave)

out

P.

mn

- 2 @} + o). (6.19)

VII. DISCUSSION

By use of the results from Sections V and VI we calculate the first order expression for inverse
cancellation ratio with N = 1,

P (ave) 3

out

CR™ ! = = =a3 + 303 + ofp [1 CFMR(M,1,BT) + IQMF(M)J. (7.1)

P 4 4 2

To make the transversal filtering effective (for N > 1), it is only necessary to adaptively weight
both the I and Q auxiliary channels separately as shown in Fig. 18 (this scheme is sometimes called
“‘real weight’’ cancellation or ‘‘IQ weight’’ cancellation). Here both of the auxiliary’s I and Q chan-
nels are cancelled against the main’s I and Q channel.

For the IQ weighting cancellation scheme, it is easily shown that the amplitude and phase
quadrature errors in the auxiliary channel can be eliminated since a 2N X 2N nonsingular matrix
exists that transforms the 2N auxiliary taps (I and Q) into 2N outputs that have no phase and ampli-
tude errors. By use of the IQ weighting scheme shown in Fig. 18, it is straightforward to show that
the first order inverse cancellation ratio for IQ weighting is given by

CRigwr = of CFMR(M ,N ,BT). (7.2)
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Fig. 18 — IQ weighting canceller

Plots of .5CFMR are given in Figs. 8 to 17. Reference 1 discusses in detail methodologies for
choosing optimal values of M, N, and BT under given constraints. Note that although using a single
adaptive transversal filter does not effectively compensate for the I,Q mismatches, it does compensate
for IF filter mismatches even though the 1,Q detecter may be part of the receiver channels. In this
case, only the IF filter mismatches are equalized, not the 1,Q LPF mismatches.

VIII. CASCADED IF/IQ FILTER CONSIDERATIONS

A receiver chain may have an IF section as shown in Fig. 1(a) for tuning purposes and thus
inherent in its functioning is IF frequency filtering. In the previous section, we showed that 1,Q
adaptive weighting is necessary to make transversal filtering effective. We now consider the inverse
CR that results from using 1,Q weighting for when the input channels pass through mismatched IF
filters followed by (or cascaded with) one of the 1,Q LPFs.

Figure 19 shows the channel model. We assume that the LPFs are designed to an ideal FTF,
H;,(jw), and that the IF filters are designed to Hjr(jw). The rms errors for the pole positions of the
IF and IQ filters are given by ojr and o, respectively. Let the bandwidth of the IF filter be Bjr, and
let that of the IQ filter be B),. We define a parameter 3 to be the ratio of Bj to Byg, or

B

B = :
BIQ

8.1)

Note that 3 is always greater than one. Let M;r and M, be the number of poles and zeros in the IF
and 1Q filters, respectively. Let s/F, i = 1,2,..., My and s99, i =1,2, ..., M,y be the
poles and zeroes of these filters. Assume that all poles have been normalized by 7B;y. For example,
if all the IQ poles are equal, then they all lie on the unit circle in the complex s -plane.
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Fig. 19 — Cascaded IF/IQ filter and canceller modeling

By using the separation principle described in Section III, we can show for the cascaded IF/IQ
filters that

CR_1=0'2 %—Sm |H1Fl2|HIQ|2dw
IF o ij _ si(IF)12

i=1

8.2)

|Hip 2] |Hyg |2 /™™™ Py,

(F)

!
1=
M=

(km) S°°
Rg
1 el Jw — s

=
[
—_
3
I

o |Hp|* |Hp|? e/ TP =My
. —jw — s

Mo o |Hjp|? |Hyp|?dw
- |jo - 5992

!HIF |2 lHIQ !2 ejw"rBIQT(Nz_k)dw

jw ~ si(IQ)

N N o
- X LRI

k=1 m=1

o |Hp|* |Hp|? ¢/ BT Mg
S—co —jw — si(lQ)*
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where R{™) is the k,m element of the inverse of the matrix whose k ,m element R i 1s defined by

& fwx By, (k —m}
Roim = S—oo | Hye |2 | Hyo |2 & e do. (8.3)

We do not give any results that can be derived from this complicated expression other than to
point out that if 8 goes to infinity, it is straightforward to show that the multiplicative factor of ok
seen in Eq. (8.2) goes to zero. Hence if the IF filters are much more difficult to match over Bj, or
equivalently 0% >> o,zQ, then significantly widening the bandwidth of the IF filter can ameliorate the
effects of IF filter mismatch. For very wide IF bandwidths, if 3>>1, then the cascaded inverse
CR™! is determined only by the mismatches in the 1,Q LPFs. Of course widening this bandwidth is
not without consequences. For example, by doing so the input noise power into the I,Q detectors is
increased so that the dynamic range of these detectors must be increased.

IX. SUMMARY

The effects of I and Q phase, amplitude, and LPF errors on adaptive cancellers were investi-
gated. I,Q errors occur because of errors in the synthesis process of the mixers and LPFs designed to
be identical for each input channel. These I,Q errors among the channels result in cancellation degra-
dation. Using a separation principle developed and discussed in the text, first order expressions for
cancellation degradation as a function of phase, amplitude quadrature errors, and LPF mismatches
were obtained. The separation principle was proved whereby we showed that a first order expression
for cancellation degradation can be computed that is the sum of the individual cancellation degrada-
tions each computed with respect to one given error. In effect, we set all errors equal to zero except
one when computing a given degradation.

Tapped delay line transversal filters have been proposed as a way to compensate for LPF fre-
quency mismatch and thus improve cancellation performance. However, it was shown that if there is
any LPF frequency mismatch, then transversal filtering has a small effect on improving canceller per-
formance. The method of individual 1,Q adaptive transversal filter weighting was suggested as a
means of eliminating the phase and amplitude errors and of making the canceller performance respon-
sive to transversal filter compensation. In addition, the cancellation performance of cascaded
mismatched IF and 1,Q filters was briefly considered.
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